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a b s t r a c t

It is generally thought that vertebral patterning and identity are globally determined prior to somite

formation. Relatively little is known about the regulators of vertebral specification after somite

segmentation. Here, we demonstrated that Ndrg2, a tumor suppressor gene, was dynamically expressed

in the presomitic mesoderm (PSM) and at early stage of differentiating somites. Loss of Ndrg2 in mice

resulted in vertebral homeotic transformations in thoracic/lumbar and lumbar/sacral transitional

regions in a dose-dependent manner. Interestingly, the inactivation of Ndrg2 in osteoblasts or

chondrocytes caused defects resembling those observed in Ndrg2�/� mice, with a lower penetrance.

In addition, forced overexpression of Ndrg2 in osteoblasts or chondrocytes also conferred vertebral

defects, which were distinct from those in Ndrg2�/� mice. These genetic analyses revealed that Ndrg2

modulates vertebral identity in segmented somites rather than in the PSM. At the molecular level,

combinatory alterations of the amount of Hoxc8-11 gene transcripts were detected in the differentiating

somites of Ndrg2�/� embryos, which may partially account for the vertebral defects in Ndrg2 mutants.

Nevertheless, Bmp/Smad signaling activity was elevated in the differentiating somites of Ndrg2�/�

embryos. Collectively, our findings unveiled Ndrg2 as a novel regulator of vertebral specification in

differentiating somites.

& 2012 Elsevier Inc. All rights reserved.
Introduction

The mammalian axial skeleton consist of cervical, thoracic,
lumbar, sacral and caudal vertebrae, which exhibit regionalized
morphological characteristics in the anterior–posterior (AP) direc-
tion (Burke et al., 1995). Vertebral development can be divided
into two phases: the early stage of somite segmentation from
the presomitic mesoderm (PSM) and the later stage of somitic
patterning and specification (Hirsinger et al., 2000). A widely
accepted model of somitegenesis is clock and wavefront model in
which a temporal periodicity in presomitic mesoderm (PSM)
coupled with a morphogen gradient (Such as Fgf, Wnt) to guide
the periodic somite formation (Dequeant and Pourquie, 2008;
Dubrulle and Pourquie, 2004; Pourquie, 2011). Somitic patterning
and differentiation specifies vertebral morphology and identity,
including the migration and osteochondrogenic differentiation of
ll rights reserved.

dical Building #1–205,
the sclerotomal mesoderm in each segmented somite (Hirsinger
et al., 2000).

The vertebral patterning and identity along the AP axis of the
embryo is generally considered to be globally determined prior to
somite formation (Alexander et al., 2009; Carapuco et al., 2005;
Juan and Ruddle, 2003; Kieny et al., 1972; Nowicki and Burke,
2000). Once the somite buds off from the PSM, it will acquire its
identity and morphological characteristics according to the pre-
endowed patterning instructions from the PSM. In inactivating
Wnt3a, Notch, Fgf or RA signaling mutants, homeotic transforma-
tions in different regions are observed in the axial skeletons;
these transformations are usually correlated with alterations in
the expression patterns of the Hox genes (Alexander et al., 2009;
Aulehla et al., 2003; Dubrulle et al., 2001; Ikeya and Takada, 2001;
Kessel and Gruss, 1991; Partanen et al., 1998). In addition, some
mutations of the Bmp signaling pathway also affect vertebral
patterning and identity (Ikeya et al., 2006; Katagiri et al., 1998;
McMahon et al., 1998; McPherron et al., 1999; Miura et al., 2006;
Oh and Li, 1997). In particular, mutations of Gdf11 or ActRIIB lead
to homeotic transformations throughout the axial skeleton (Lee
et al., 2010; McPherron et al., 1999; Oh and Li, 1997; Oh et al.,
2002).
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Hox gene expression patterns are believed to form a
‘‘Hox code’’ essential for normal vertebral patterning (Alexander
et al., 2009; Iimura et al., 2009; Iimura and Pourquie, 2007;
Krumlauf, 1994; Mallo et al., 2010; Tschopp and Duboule, 2011;
Wellik, 2007; Young and Deschamps, 2009). In mice, 39 Hox genes
are organized into four collinear clusters on chromosomes and
can be subdivided into 13 paralogous groups based on their
similarities in both sequence and position (Alexander et al.,
2009; Maconochie et al., 1996). Hox gene expression along the
vertebrate AP axis exhibits a collinear pattern in which the
expression boundary of a given Hox gene is usually related to
its chromosomal position (Kmita and Duboule, 2003; Tschopp and
Duboule, 2011). The temporal collinearity of the Hox genes is
translated into a spatial collinear expression along the AP axis,
defining the region-specific identity of vertebrae. The loss-of-
function and gain-of-function mutants of Hox genes usually dis-
play vertebral homeotic transformations (Alexander et al., 2009;
Wellik, 2007, 2009).

Ndrg2 (N-Myc downstream regulated gene 2) was first identi-
fied as one of the Ndrg family members (Ndrg1–4) (Okuda and
Kondoh, 1999). The Ndrg family is highly conserved in phylogeny,
as human NDRG2 exhibits 95% amino acid sequence identity with
the mouse homolog. Human Ndrg family members also share
53%–65% amino acid sequence identity with each other (Hwang
et al., 2011; Yao et al., 2008). Recently, crystal structural analysis
suggests that Ndrg2 is a non-enzymatic member of the a/b
hydrolase superfamily because it lacks some important residues
and has an occluded substrate binding site (Hwang et al., 2011).
Despite these observations, the molecular and cellular functions
of Ndrg2, a cytoplasmic protein, are still unclear (Li et al., 2011).
During mouse embryonic development, Ndrg2 is mainly detected
in the brain, heart, liver, kidney, skeletal muscle, limb bud and
somites (Hu et al., 2006; Okuda and Kondoh, 1999) and is
involved in the development of multiple organs (Dupays et al.,
2009; Foletta et al., 2009; Takahashi et al., 2005; Yang et al.,
2010). Furthermore, the accumulated data also suggest that Ndrg2

is a potential tumor suppressor gene (Yao et al., 2008). However,
the role of Ndrg2 during mouse embryogenesis is still poorly
understood due to the lack of Ndrg2 loss-of-function analyses
based on mouse genetics.

In this study, we generated Ndrg2 gain-of-function and loss-of-
function mutant mice. Analyses of the vertebral defects in these
mutants suggest that Ndrg2 is a novel regulator of vertebral
patterning and morphogenesis in differentiating somites rather
than in the PSM. Ndrg2 may exert its effect on vertebral specifica-
tion, partially through regulating the expression of Hox genes and
inhibiting Bmp/Smad signaling activity.
Materials and methods

Mice

Ndrg2c/c mutant mice were generated by Organism Biomodel,
China. An Ndrg2 genomic clone was isolated from BAC libraries
(bMQ-181G14). Targeted 129SV/EV ES cells were identified by PCR
using P1: 50AGATTGAGTGTGAACGCTAAATAATG plus P2: 50AGG-
TGCCACTCCCACTGTCCTTTCCTA and P3: 50CTGAGCCCAGAAAG-
CGAAGGA plus P4: 50GGTAACTTCTCCACAAAGGTTAAGAG, produ-
cing 4424 and 4824 bp products, respectively. The floxed
allele was identified by PCR using P5: 50AAAAGCTCTCCGTGTGT-
CTTGGCGT, P6: 50CAGGAGAGGATGAAGGTTAGTGTAG, and P7:
50ATCAGGATGATCTGGACGAAGAG, which produce 577 and
844 bp products from the wild type and floxed alleles, respec-
tively. Mice carrying the Ndrg2 floxed allele were crossed with
Actin-Cre (Jackson Laboratories, Bar Harbor, ME) transgenic mice
to obtain null allele. Male offspring with Actin-Cre allele were
further mated to wild type C57BL/6 female mice to generate
conventional null heterozygotes (Ndrg27 , without Actin-Cre

allele). Then Ndrg27 mice were crossed to each other to generate
Ndrg2�/� mice. The null allele was identified by PCR using P5 and
P8: 50GTCATTTGGGAGAATGGAGGAGGCA, which amplified a
724 bp fragment. Osteoblast-specific and chondrocyte-specific
Ndrg2 conditional knockout mice were generated by crossing
female Ndrg2c/c homozygous mice with Col1a1-Cre (3.6 kb)
(Liu et al., 2004; Zha et al., 2008) and Col2a1-Cre (Ovchinnikov
et al., 2000) males, respectively. Then, Col1a1-Cre; Ndrg2c/þ

or Col2a1-Cre; Ndrg2c/þ males were backcrossed to female
Ndrg2c/c mice.

Col1a1 (3.6 kb)-Ndrg2 and Col2a1-Ndrg2 transgenic mice were
generated by our lab using the FVB/NJ or ICR/CD1 mouse strains.
The Ndrg2 cDNA clone was obtained from ATCC clones (BC012963
ATCC, USA). The Col1a1 (3.6 kb) promoter and Col2a1 promoter
were the same as those used in generating the transgenic Cre

mice. The genotyping primers for the Col1a1-Ndrg2 and Col2a1-
Ndrg2 mice were as follows: Col1a1-Ndrg2 forward: 50CACTCCA-
GTGACAGCACCTCT, reverse: 50GGCTCCAACACCAACTCCAATT;
Col2a1-Ndrg2 forward: 50GAAACAACTACACCCTGG.

TCATCA, reverse: 50CCGCACGAAGTTCTGTATGATCTC. To ana-
lyze the activity of Wnt/b-catenin signaling, Ndrg2 null mice were
crossed with BatGal mice (Jackson Laboratories, Bar Harbor, ME),
and b-gal staining was performed using X-gal as substrate.

RNA in situ hybridization and immunostaining

RNA in situ hybridization was performed as previously
described (Guo et al., 2004) using digoxin-labeled probes for
Bmp4, Fgf8, Hoxd13 (Liu et al., 2012), Lef1 (Guo et al., 2004),
Wnt3a, and EN-1 (kindly provided by Dr. A.L. Joyner). The
following probes were synthesized using their complete cDNA
clones as templates: Ndrg2 (BC012963), Hoxa9 (BC055059), Hoxc9

(BC050838), Hoxa10 (BC050839), Hoxc10 (BC053405) and Hoxd10

(BC048690). Constructs for the rest of probes used in this study
were prepared in our lab, and the primers for these constructs are
listed in Supplementary Table S1.

For immunostaining, embryos were fixed in 4% paraformalde-
hyde and incubated in 30% sucrose and were then sectioned at
10 mm. Primary antibodies against Ndrg2 (sc-50345, Santa Cruz,
USA) and MyoD (554130, BD Biosciences, USA) and secondary
antibodies conjugated to Alexa Fluors488 and Alexa Fluors594
(Invitrogen, CA, USA) were used in immunostaining. Antibody-
labeled sections were counterstained with DAPI fluorescent dye
(Southern Biotech, AB, USA) and observed and photographed
using a Leica SP5 (Leica, German) confocal microscope.

Semi-quantitative and quantitative RT-PCR and Western blot

Total RNA from cultured cells or tissues was isolated using Trizol
reagent (Invitrogen, CA, USA). cDNA was then synthesized using the
SuperScriptTM III First-Strand Synthesis System (Invitrogen, CA, USA).
For semi-quantitative RT-PCR, 1 mg of cDNA was subjected to PCR
analysis using the primers listed in Supplementary Table S1. The
quantitative RT-PCRs were performed on an Applied Biosystems
7500 using SYBR reagents (04913850001, Roche, Switzerland).
Primer sequences are also provided in Supplementary Table S1.

Proteins derived from somites of 12–25 of embryos at E11.5
and cell lysates were subjected to western blot analysis using
standard technologies. Embryo trunks and cultured cells were
lysed in T PERs tissue protein extraction reagent (78510, Thermal
Scientific) and NP40 lysis buffer, respectively. The western
blots were probed with the primary antibodies anti-Ndrg2 (sc-
100787, Santa Cruz, USA), anti-Smad1 (9743, Cell Signaling, USA),

BC012963
BC055059
BC050838
BC050839
BC053405
BC048690
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anti-phosphorylated-Smad1/5/8 (9511, Cell signaling, USA), or
anti-b-actin (sc-69879, Santa Cruz, USA), followed by treatment
with HRP-conjugated secondary antibodies. Positive signals were
visualized using a Pierce ECL western blotting substrate detection
Kit (32132, Pierce, USA). For quantification, the images were
analyzed and quantitated in Adobe Photoshop following the
method outlined at /http://www.lukemiller.org/journal/2007/
08/quantifying-western-blots-without.htmlS.

Skeletal analysis

Skeletal analysis of newborn mice and 1-month-old mice were
performed using the Alcian Blue/Alizarin Red S staining methods
as previously described (Zhu et al., 2012).

Cell culture and transfection

The ATDC5 mouse chondrogenic cells were cultured in a 1:1
mixture of Dulbecco’s modified Eagle’s medium and Ham’s F-12
medium (DMEM/F12, GIBCO) containing 5% fetal bovine serum
(FBS, GIBCO). Cell lines were stably transfected with pCDNA-
Ndrg2 or pCDNA-GFP using the MSCV retrovirus Retroviral
Expression System (634401, Clontech) according to the manufac-
turer’s instructions. Viruses were harvested and used for the
transduction of ATDC5.
Results

Ndrg2 is expressed in the presomitic mesoderm and differentiating

somites

To characterize Ndrg2 expression during somitogenesis, we
performed in situ hybridization (ISH) and immunostaining.
At E8.5 and E9.5, Ndrg2 was faintly expressed in the PSM
(Fig. 1A and C), which was labeled using Fgf8 (Fig. 1B and D). By
the time neural tube closure was completed, cells of the paraxial
mesoderm were generated by tail bud (Cambray and Wilson,
2007). Ndrg2 was continuously expressed in tail bud (black
arrows in Fig. 1E, G and H0). In the differentiating somites, Ndrg2

exhibited a dynamic expression pattern. At E9.5, Ndrg2 was
markedly expressed in the anterior somites S1–S7 (red arrows
Fig. 1. Expression pattern of Ndrg2 during somite patterning and differentiation. The ex

immunostaining. (A–D) Ndrg2 is weakly expressed in the PSM at E8.5 (A) and in ante

expression is mainly detected in the posterior somites and decreases anteriorly at E10.5

Ndrg2 is continually expressed in the distal tip of tail bud (black arrows in E, G and H

observed in the developing limb buds and forebrain (H). (I, I0) ISH for Ndrg2 in frozen

sclerotome mesoderm and surrounding mesoderm, including SML and SP. (I0) Power

sections of somites at E10.5. Ndrg2 is similarly detected in the extensive mesoderm inclu

area shown at a higher magnification in (J0). PSM, presomitic mesoderm; TB, tail bud; NT

bars: in A–B, 500 mm; in C–H0 , 1 mm; in I and I0 , 100 mm; in J, 250 mm; in J0 , 25 um.
in Fig. 1C). After E10.5, Ndrg2 expression was restricted to the
posterior somites and decreased anteriorly (Fig. 1E–H0). Through
ISH and IHC examination on sections of E10.5 embryos, Ndrg2

expression was extensively detected in the majority of sclerotome
and the surrounding mesoderm, including the somitic mesoderm
layer and splanchnic mesoderm layer (Fig. 1I–J0). However, Ndrg2

expression was remarkably decreased at later stage of chondro-
genic differentiation of sclerotome mesoderm (Data not shown).
These results indicate that Ndrg2 was preferentially expressed at
the early stage of somite differentiation. In addition, Ndrg2 was
strongly expressed in the developing heart as reported previously
(Fig. 1C, E and G), as well as in the limb buds and forebrain at
E12.5 (Fig. 1H). The dynamic expression of Ndrg2 in the PSM and
differentiating somites indicates a potential role of Ndrg2 in axial
specification.

Generation of Ndrg2 knockout mice

To reveal the role of Ndrg2 in vertebral morphogenesis, we
generated a mouse line carrying the Ndrg2 conditional knockout
allele (Ndrg2c/c) with exon2-6 flanked by LoxP sites (Fig. 2A
and B). Female homozygotes (Ndrg2c/c) were crossed to Actin-Cre

transgenic male mice, which have ubiquitous Cre activity. Male
offspring with Actin-Cre allele were further mated to wild type
C57BL/6 female mice to generate conventional null allele
(Ndrg27). The conditional and null alleles were identified by
PCR (Fig. 2C). To assess the depletion efficiency, RNA and protein
extracted from wild type, Ndrg27 and Ndrg2�/� newborn mice or
embryos were subjected to RT-PCR and western blotting, respec-
tively (Fig. 2D and E). All these results demonstrate that Ndrg2

mRNA and protein expression are completely depleted in the
knockout mice.

Loss of Ndrg2 modulates the vertebral identity in a dose-dependent

manner

The homozygous Ndrg2 knockout mice (Ndrg2�/�) were viable
and fertile with no apparent growth defects. However, Ndrg2-
deficient mice exhibited several homeotic transformations in the
axial skeleton (Figs. 3 and 4 and Table 1). In wild type C57BL/6
mice, the axial skeleton usually consists of 7 cervical vertebrae, 13
pression of Ndrg2 during somitogenesis was examined by in situ hybridization and

rior somites (S1–S7) at E9.5 (C). The PSM is marked by Fgf8 (B, D). (E–H0) Ndrg2

(E), E11.5 (G) and E12.5 (H, H0). Somites at E10.5 are visualized by ISH for MyoD (F).
0). The red arrows mark the boundary of Ndrg2 expression. At E12.5, Ndrg2 is also

section of somites at E10.5, showing that Ndrg2 is extensively expressed in the

view of rectangular area shown in (I). (J, J0) Immunostaining for Ndrg2 on frozen

ding SC, SML and SP. Nuclei are stained with DAPI. The rectangle in (J) indicates the

, neural tube; SML, somitic mesoderm layer; SP, splanchnic mesoderm layer. Scale

http://www.lukemiller.org/journal/2007/08/quantifying-western-blots-without.html
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Fig. 2. Conditional targeted strategy for Ndrg2 locus. (A) Schematic representation of the Ndrg2 wild-type locus (wild type, top), targeting vector (middle), targeted allele

(Ndrg2-floxed, middle), and null allele (Ndrg2-Null, bottom). Exons are represented by solid rectangles. The targeting vector, which is flanked by 3675 bp of 50 homology

and 2138 bp of 30 homology, contains a LoxP-Frt-Neo-Frt cassette and the second LoxP sequence in introns 1 and 6, respectively. (B) Genomic PCR for the recombinant ES

cell line. The recombinant is isolated by oligos P1/P2 for the 50 arm and P3/P4 for the 30 arm (marked in A), generating 4424 and 4484 bp PCR fragments, respectively.

Oligos (P1–P4) positions are indicated below the Ndrg2-floxed allele. (C) PCR genotyping of Ndrg2 mutant mice. Four oligos (P5–P8) for the PCR of Ndrg2 alleles are also

marked by arrows in (A). P5/P7 amplifies a 577 bp fragment for the wild-type allele (þ), P5/P6 generates a 826 bp fragment for the floxed allele (c), whereas P5/P8

produces a 724 bp fragment for the null allele (�). (D) RT-PCR analysis of Ndrg2 expression in wild-type, heterozygous and null mice at P0. Total RNA is extracted from the

liver. (E) Western blotting analysis of Ndrg2 protein in wild-type, heterozygous and null embryos at E11.5. Protein was extracted from cells of the 12th somite (S12) to the

25th somite (S25).

Fig. 3. Axial skeletal phenotypes in Ndrg2-deficient mice. (A–B) Lateral view of the lower thoracic region. (C–E) Dorsal view of the posterior thoracic region to anterior

caudal region. (A) The transitional vertebra is T10 in wild-type mice. The morphology of the costal facet in T10 (white arrow) is distinct from T11. (B) In Ndrg2 null mice,

the T10 costal facet (white arrow) is similar to the T11 costal facet, indicating that the transitional vertebra shifts from T10 to T9. (C) Wild-type mice have 13 thoracic

vertebrae and 6 lumbar vertebrae. (D) In Ndrg27 , the left rib on T13 is not fully developed (black arrow), denoting that T13 is partially transformed to L1. The 6th lumbar

vertebra is fused with the transverse processes in the right side to form a sacral vertebra (red arrow), indicating a partial transformation to S1. (E) Much more severe

vertebral defects are observed in Ndrg2�/� . The ribs on T13 disappeared (black arrow), and the L6 vertebrae are transformed to S1 (red arrow). In addition, the S4

transverse processes fuse to the S3 transverse processes (purple arrow), suggesting the transformation of S4 into S3. Asterisks indicate transformed vertebrae. All the

samples are taken from newborn mice.
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Fig. 4. Vertebral defects in Ndrg2 null mice. Dorsal view of individual thoracic (A) and sacral vertebrae (B) from 1-month-old wild-type littermate mice (upper row) and

Ndrg2 null mice (lower row). (A) The overall shape of T10 in Ndrg2�/� is more similar to T11 than T10 in Ndrg2þ /þ . Black arrows point to costal facets. The red arrow

indicates a rudimentary rib on T13. (B) The transverse processes of the S2nmutant (bottom arrow) have an intermediate shape. Asterisks indicate transformed vertebrae.

Table 1
Vertebral phenotypes in Ndrg2 mutants.

Genotype phenotype WT
n¼44

Ndrg27

n¼17
Ndrg2 � /�

n¼15
Col1a1-Cre; Ndrg2c/c

n¼16
Col2a1-Cre;
Ndrg2c/c n¼15

Col1a1-Ndrg2
n¼3 founders

Col2a1-Ndrg2
n¼3 founders

Defect in C1 0/44 (0%) 0/17 (0%) 0/15 (0%) 0/16 (0%) 0/15 (0%) 1/3 0/3

T13 to L1 1/44 (2.3%) 7/17 (41%) 12/15 (80%) 7/16 (44%) 5/15 (33%) 0/3 0/3

L1 to T13 0/44 (0%) 0/17 (0%) 0/15 (0%) 0/16 (0%) 0/15 (0%) 2/3 3/3

L6 to S1 0/44 (0%) 14/17 (82%) 14/15 (93%) 14/16 (88%) 8/15 (53%) 0/3 0/3

S4 to S3 0/44 (0%) 12/17 (71%) 14/15 (93%) 11/16 (69%) 6/15 (40%) 3/3 3/3

Transitional vertebra
T10 44 (100%) 11 (65%) 4 (27%) 12 (75%) 11 (73%) 1/3 3/3

T9 0 (0%) 6 (35%) 11 (73%) 4 (25%) 4 (27%) 2/3 0/3
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thoracic vertebrae, 6 lumbar vertebrae, 4 sacral vertebrae and a
variable number of caudal vertebrae (Green, 1941; O’Higgins and
Johnson, 1993). In the Ndrg2�/� mice, the number of precaudal
vertebrae was the same as in the wild type, while the organiza-
tion of the vertebrae was altered. The transitional vertebra in the
wild-type mice is at the level of the tenth thoracic vertebra (T10),
which is known as the most anterior vertebra to show a lumbar
rather than a thoracic articulation between the pre- and post-
zygapophyses (Hostikka et al., 2009; Pollock et al., 1992), whereas
the transition in Ndrg2�/� mice occurred at the ninth thoracic
vertebra (T9). The T10 in the Ndrg2�/� mice was partially similar
to the morphology of T11 in the wild-type mice (Fig. 3A and B,
Fig. 4A). The ribs on the thirteenth thoracic vertebra (T13) were
shortened or completely lost in the Ndrg2�/� mice, indicating a
posterior transformation of the thirteenth thoracic vertebra (T13)
into the first lumbar vertebra (L1) (black arrows in Fig. 3D and E).
Meanwhile, the caudal lumbar vertebra (L6) underwent a similar
transformation into the sacral vertebra (S1) in the Ndrg2�/�

mutant (red arrows in Fig. 3D and E). In addition, the mutant S4
transverse processes fuse to the S3 transverse processes (purple
arrow in Fig. 3E), and the mutant S3 processes (S2n in Fig. 4B)
exhibited intermediate morphology between normal S2 and S3
processes. We noticed that the anterior and posterior homeotic
transformations were detected in thoracic/lumbar and lumbar/
sacral transitional regions which were vulnerable and preferen-
tially affected in Hox mutants (Alexander et al., 2009). Further-
more, the Ndrg27 mice had a milder phenotype with a lower
penetrance than the Ndrg2�/� mice (Fig. 3D and E, Table 1). Taken
together, these vertebral transformations indicate that Ndrg2

modulates the vertebral specification in transitional regions in a
dose-dependent manner.

Inactivation of Ndrg2 does not perturb the clock signaling in PSM

The Wnt, Fgf, RA and Notch signaling pathways are early
regulators of somitogenesis within the paraxial mesoderm
(Alexander et al., 2009; Aulehla et al., 2003; Dubrulle et al.,
2001; Ikeya and Takada, 2001; Kessel and Gruss, 1991; Partanen
et al., 1998). As Ndrg2 was expressed in the PSM during somito-
genesis (Fig. 1A), Ndrg2 possibly regulates vertebral identity in the
PSM. To test this hypothesis, we examined the expression of
several key components of these signaling pathways in Ndrg2�/�

embryos. No change in the expression of Fgf8 or Notch1 was
detected in the PSM at E10.5 (Fig. 5A, B, G and H). The expression
of Hey1 and Spry2, the readouts of Notch and Fgf signaling
activity, respectively, was also intact in the PSM of Ndrg2�/�

embryos (Fig. 5E, F, I and J). In addition, the expression of Raldh2

(a RA marker) and Dll1 (a receptor for Notch1) was also unchanged
(Fig. 5C, D, K and L).

It has been reported that Ndrg2 attenuates Wnt/b-catenin
signaling in human colon cancer cell lines and B16F10 mouse
melanoma cells (Yao et al., 2008). However, the expression of
both Wnt3a and Lef1 was not changed in Ndrg2�/� embryos
(Fig. 5M, N, O and P). In our experiments, forced Ndrg2 over-
expression did not alter Wnt/b-catenin signaling in C3H10T1/2 or
ATDC5 cells (data not shown). Furthermore, the Ndrg2�/� mice



Fig. 5. Inactivation of Ndrg2 does not perturb major cyclic signaling in the PSM. (A–P) The Notch, Fgf, RA and Wnt signaling pathways are examined in embryos by whole

mount in situ hybridization using various markers: Notch1, Dll1 and Hey1 for Notch signaling (A–F); Fgf8 and Spry2 for Fgf signaling (G–J); Raldh2 for RA signaling (K, L);

Wnt3a and Lef1 for Wnt signaling (M–P). (Q, R) The number of somites visualized by MyoD is not altered in Ndrg2-deficient embryos. Somite 12 and somite 25 are

referenced as landmarks. All samples are at E10.5, and the experiments were repeated at least 2 times. (S, T) X-gal staining of BatGal; Ndrg27 and BatGal; Ndrg2� /�

embryos at E10.5. No significant difference is detected (n¼8). Scale bar: 500 mm.
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were crossed with BatGal reporter mice to assess the in vivo
Wnt/b-catenin signaling activity. X-gal staining of the Ndrg2�/�;
BatGal embryos at E10.5 was similar to that of Ndrg27; BatGal

embryos (Fig. 5S and T), indicating that the Wnt/b-catenin
signaling activity was not affected in the Ndrg2�/� embryos.
Additionally, the total number of segmented somites in the Ndrg2

null mutant, as marked by MyoD expression, was the same as in
that the wild type (Fig. 5Q and R). These data suggest that the
inactivation of Ndrg2 does not perturb the major oscillating
signaling in the PSM or the overt somitogenesis at early stages.

Conditional inactivation or overexpression of Ndrg2 in differentiating

somites produces vertebral transformations

As the inactivation of Ndrg2 did not perturb the expression of
major oscillating genes, we speculated that Ndrg2 might regulate
the somitic specification in differentiating somites rather than in
the PSM. To validate this hypothesis, we generated conditional
knockout mice in which Ndrg2 was specifically deleted through
the Col2a1-Cre or Col1a1-Cre mice, which have Cre activity in
chondrocytes or osteoblasts respectively (Liu et al., 2004;
Ovchinnikov et al., 2000; Zha et al., 2008). Surprisingly, the
Col1a1-Cre; Ndrg2c/c and Col2a1-Cre; Ndrg2c/c mice recapitulated
all the vertebral defects observed in the Ndrg2 deficient mice with
a lower penetrance (Fig. 6D and E, Table 1), including the anterior
shift of the transitional vertebra from T10 to T9 and the homeotic
transformations of T13–L1, L6–S1, and S3– S2.

Conversely, when Ndrg2 was overexpressed in the osteochon-
droprogenitor cells driven by the Col1a1 promoter (3.6 kb) or the
Col2a1 promoter (Liu et al., 2004; Ovchinnikov et al., 2000; Zha
et al., 2008), vertebral homeotic transformations in thoracic/
lumbar and lumbar/sacral transitional regions in these transgenic
mice were also detected (Fig. 6B and C, Table 1). In the Col1a1-

Ndrg2 transgenic mice, C2 split into two parts in the dorsal region
(red arrow in Fig. 6B, Table 1). In two of the three Col1a1-Ndrg2

transgenic founders, the transitional vertebra occurred at T9
instead of T10, as in the wild type (white arrow in Fig. 6B,
Table 1). Furthermore, there were rudimentary ribs on the first
lumbar vertebra (L1) in the Col1a1-Ndrg2 transgenic mice, indi-
cating that L1 had a tendency towards anterior transformation
into a thoracic vertebra (T13) (red arrows in Fig. 6B0, Table 1). This
transformation could be considered as the opposite of that
observed at this location in the Ndrg2-deficient mice. In addition,
the Col1a1-Ndrg2 transgenic mice displayed a homeotic transfor-
mation of S3 into S2 (purple arrow in Fig. 6B) similar to that of
Ndrg2�/� . Meanwhile, the Col2a1-Ndrg2 transgenic mice exhib-
ited similar defects as the Col1a1-Ndrg2 mice except that the
transitional vertebra was still T10 (arrows in Fig. 6C and C0,
Table 1). From the Ndrg2 loss-of-function and gain-of-function
phenotypes in differentiating somites, it is reasonable to spec-
ulate that Ndrg2 is precisely controlled to regulate vertebral
morphogenesis in the differentiating somites rather than in
the PSM.

Expression levels of Hox genes in somites are differentially altered

in Ndrg2 null embryos

Hox gene clusters play pivotal roles in regulating the pattern-
ing of somites, and their expression is considered to be a
combinatorial code for somitic identity (Alexander et al., 2009;



Fig. 6. Axial skeletal phenotypes in Ndrg2 transgenic and Ndrg2 conditional knockout mice. Side view of the cervical region (upper panel in A, B), lateral view of the lower

thoracic region (middle panel in A, B; upper panel in C–E), dorsal view of the posterior thoracic region to anterior caudal region (middle panel), and dorsal view of the

sacral region (bottom panel) for the wild-type (A), Col1a1-Ndrg2 (B), Col2a1-Ndrg2 (C) Col1a1-Cre; Ndrg c/c (D) and Col2a1-Cre; Ndrg2c/c (E) mice. Vertebral identities are

indicated in panels, with the transitional vertebra labeled in red. (A–C) In the Col1a1-Ndrg2 transgenic mice (B), C2 is split into two parts in the dorsal region (red arrow

in B), the spinous processes on T9 and T10 are linked together (arrowhead) and the costal facet of T10 (white arrow in B) is similar to that of T11, indicating the transitional

vertebra shifts from T10 to T9. In the Col2a1-Ndrg2 transgenic mice (C), the transitional vertebra is still T10. In both the Col1a1-Ndrg2 and Col2a1-Ndrg2 transgenic mice,

there are rudimentary ribs on both sides of L1 (red arrows in B0 and C0), and the S4 (S3n) transverse processes fuse to S3 transverse processes (purple arrows in B, C). (B0 ,C0)

High-power view of the rectangular area in B and C. (D, E) Col1a1-Cre; Ndrg2c/c and Col2a1-Cre; Ndrg2c/c mice can recapitulate all the homeotic transformations observed in

Ndrg2� /� mice. The white arrows, black arrows and purple arrows indicate the T10 costal facets and rudimentary ribs on the L1 and S4 (S3n) transverse processes,

respectively. Asterisks indicate transformed vertebrae. All the Ndrg2 mutant mice were compared with wild-type littermates. For illustrative purposes, only the control for

Col1a1-Ndrg2 is shown. The penetrances of these phenotypes are listed in Table 1.
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Kessel and Gruss, 1991; Kmita and Duboule, 2003; Mallo et al.,
2010; Wellik, 2007). To explore the mechanisms underlying the
homeotic transformations in Ndrg2�/� mice, we examined the
expression patterns of Hoxa9-11, Hoxb9, Hoxc8-11, and Hoxd9-13

(Fig. 7 and Supplemental Fig. S1), which confer identity to the
vertebrae from the middle thoracic region to caudal region
(Alexander et al., 2009; Le Mouellic et al., 1992; Mallo et al.,
2010; McIntyre et al., 2007; van den Akker et al., 2001; Wellik,
2007; Wellik and Capecchi, 2003). The examinations were con-
ducted at E10.5, when the somite sclerotome from cervical to
sacral level are beginning to undergo osteochondrogenic differ-
entiation (Ovchinnikov et al., 2000). The overall expression level
of Hoxc8 and Hoxc9 in somites was increased in Ndrg2�/�

embryos with respect to the wild-type embryos (Fig. 7A–D).
Conversely, the expression of Hoxc10 and Hoxc11 in somites at
the prospective sacral level was impaired in the Ndrg2�/�

embryos (red asterisks in Fig. 7E–H). The change of the amount
of Hoxc8-11 gene transcripts was validated by quantitative
RT-PCR (Fig. 7I–L). The expression of the other Hox genes listed
was unchanged in the null mutant (Supplemental Fig. S1).
Furthermore, we examined the expression of Hoxc8-11 and
Hoxa9-11 genes in Col1a1-Ndrg2 transgenic embryos (Supplemen-
tal Fig. S2). Slight but significant changes in the expression levels
of Hoxa9-10 and Hoxc8-10 genes were detected. The alterations in
Hox gene expression indicates that Ndrg2 regulates vertebral
specification partially through regulating Hox genes expression.

According to previous reports, axial homeotic transformations
are usually correlated with alterations in the expression boundaries
of the Hox genes (Ikeya and Takada, 2001; Kessel and Gruss, 1991;
Partanen et al., 1998). Interestingly, the amount of transcripts
rather than the expression boundaries of the Hox genes examined
were altered in the Ndrg2�/� embryos compared to their wild-type
littermates (Fig. 7 and Supplemental Fig. S1). These results are
consistent with the notion that the expression boundaries of the
Hox genes are mainly determined prior to somite segmentation
(Alexander et al., 2009; Forlani et al., 2003; Iimura and Pourquie,
2006).

Bmp signaling activity is elevated in the differentiating somites

of Ndrg2� /� embryos

Numerous mutations of the Bmp signaling pathway also affect
the axial AP patterning (Ikeya et al., 2006; Katagiri et al., 1998;
McMahon et al., 1998; McPherron et al., 1999; Oh and Li, 1997). To
investigate whether Bmp signaling was involved in the regulation of
vertebral identity by Ndrg2, we examined Bmp4 expression as well
as Bmp/Smad signaling activity in the Ndrg2�/� embryos at E10.5
and E11.5. We found that the expression of Bmp4 in differentiat-
ing somites from thoracic to sacral level was grossly increased
in Ndrg2�/� embryos compared to their control littermates,
whereas Bmp4 expression in limb buds was not obviously
changed (Fig. 8A–B0). The En-1 expression level was decreased
in the corresponding somites in Ndrg2�/� embryos (Fig. 8C–D0).
In fact, a similar alteration of En-1 expression is detected in
Noggin�/� embryos, which are Bmp gain-of-function mutants
(McMahon et al., 1998; Pizette et al., 2001). Moreover, En-1 null



Fig. 7. Expression pattern of Hox genes in Ndrg2-deficient embryos. The expression of Hoxc8-11 is examined in wild-type and Ndrg2�/� embryos. (A–D) The

expression levels of Hoxc8 (n¼3, A, B) and Hoxc9 (n¼3, C, D) are increased in the Ndrg2�/� embryos compared with littermate controls. (E–H) Hoxc10 (n¼2, E, F) and

Hoxc11 (n¼2, G, H) expression levels are decreased in the prospective sacral somites (red asterisks) in Ndrg2�/� embryos compared with the littermate controls. Note that

the anterior boundaries of Hox gene expression, which are marked by red arrows, are not significantly affected in Ndrg2� /� embryos. All the embryos are isolated at E10.5.

Scale bar: 500 mm. (I–L) The alterations of Hoxc8-11 expression are validated by qRT-PCR. Total RNA is extracted from somites posterior to the 12th somite at E10.5.

Ndrg2� /� embryos are compared with littermate controls (n¼4). Values are represented as the means7SEM, and the relative mRNA expression is normalized to the

b-actin gene expression level. *p¼0.0114,***po0.0001, **po0.0015.
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mice also exhibit vertebral transformation of T13–L1 (Wurst et al.,
1994). The alterations of Bmp4 and En-1 expression were further
validated by quantitative-PCR using RNA extracted from S12 to
S25 of embryos at E10.5 (Fig. 8E and F). In addition to Bmp4, we
also examined the expression of other Bmp ligands in Ndrg2 null
embryos, such as Bmp2, Bmp7 and Gdf11, which were expressed
during axial skeleton development (Reshef et al., 1998). However,
no significant alteration was observed for their expression levels
(data not shown).

In the differentiating somites, IHC showed that p-Smad1/5/8
expression, an indicator of Bmp/Smad signaling activity, was
elevated in the somitic mesoderm of Ndrg2�/� embryos com-
pared to the wild-type embryos at E10.5 (Fig. 8G and H). The
increase in p-Smad1/5/8 expression was further validated by
western blotting of proteins isolated from S12 to S25 of E11.5
embryos (Fig. 8I and J). In addition, the in vitro overexpression of
Ndrg2 downregulated Bmp4 mRNA and p-Smad1/5/8 expression
in murine ATDC5 cells, which also suggested a negative effect of
Ndrg2 on Bmp/Smad signaling (Supplemental Fig. S3).
Discussion

In this paper, we investigated the function of Ndrg2 in
modulating vertebral specification using Ndrg2 loss-of-function
and gain-of-function mutants. Our results demonstrate that Ndrg2

is a novel regulator of vertebral specification, especially for the
vertebrae in thoracic/lumbar and lumbar/sacral transitional
regions. It may exert the effect through modulating Bmp/Smad
signaling and Hox gene expression in a dose-dependent manner.
Nevertheless, Ndrg2 regulates vertebral identity and morphology
in differentiating somites rather than in the PSM, which is distinct
from the other regulators previously reported.

Ndrg2 regulates vertebral patterning and morphogenesis

in differentiating somites

Ndrg2 was expressed early in the PSM and was dynamically
expressed in differentiating somites. Ndrg2-deficient mice exhibited
vertebral defects in thoracic/lumbar and lumbar/sacral transitional
regions: the transitional vertebra shifts from T10 to T9, and there
are homeotic transformations of T13–L1, L6–S1 and S3–S2. Despite
the several vertebral transformations at transitional regions, the
total number of precaudal vertebrae in Ndrg2�/� was the same as
that in the control. As the inactivation of Ndrg2 does not perturb the
expression of major oscillating genes in the PSM, we speculate that
Ndrg2 does not regulate somite generation in the PSM.

To further clarify the functional timing of Ndrg2, we condition-
ally depleted Ndrg2 in osteochondrogenic cells using Col1a1-Cre

and Col2a1-Cre transgenic mice, which have Cre activity in
differentiating somites but not PSM. Both the Col1a1-Cre; Ndrg2c/

c and Col2a1-Cre; Ndrg2c/c conditional knockout mice could fully
recapitulate the defects observed in Ndrg2�/� , but with a lower
penetrance. In contrast, the Ndrg2-overexpressing Col1a1-Ndrg2

and Col2a1-Ndrg2 transgenic mice also exhibited vertebral homeo-
tic transformations that were distinct from those in the Ndrg2-
deficient mice. These results indicate that the critical function of
Ndrg2 occurs at the osteochondrogenic differentiation stage.



Fig. 8. Ndrg2 inhibits Bmp/Smad signaling in differentiating somites. (A–D) Expression levels of Bmp4 and EN-1 are examined in Ndrg2þ /þ (A, C) and Ndrg2�/� embryos

(B, D) at E10.5. Bmp4 expression is increased (n¼3, A, B) whereas EN-1 expression is decreased in somites (n¼3, C, D). (A0–D0) High-power view of the signal at the forelimb

levels in (A–D), respectively. (E, F) qRT-PCR analysis confirms the changes in Bmp4 and EN-1 mRNA levels in Ndrg2� /� embryos compared with littermate wild-type

controls (n¼4). Total RNA was extracted from S12 to S15 (somites between forelimb and hindlimb) at E10.5. Ndrg2� /� embryos are compared with littermate controls

(n¼4). Values are represented as the means7SEM, and the relative mRNA expression is normalized to the b-actin gene expression level. **po0.0024. (G, H)

Immunostaining for p-Smad1/5/8 in sagittal sections of S13 to S17 from Ndrg2þ /þ (G) and Ndrg2�/� (H) embryos at E10.5. P-Smad1/5/8 is mainly detected in the somitic

mesoderm (red arrow in G) of differentiating somites in Ndrg2þ /þ , whereas its expression is elevated and expanded in Ndrg2� /� somites (red arrow in H). This experiment

was repeated independently at least 3 times, with similar results. (I) The p-Smad1/5/8 protein level is increased in Ndrg2� /� somites compared to wild-type somites

according to western blot analysis. Protein was extracted from S12 to S25 cells at E11.5. b-actin and Smad1 are assayed as controls. This experiment was repeated

independently twice. A, anterior; P, posterior; S, somite. Scale bar: 10 mm (J) Quantification of relative p-Smad1/5/8 protein level in (I).
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According to previous studies, the global patterning of somites
occurs prior to somite formation (Alexander et al., 2009; Carapuco
et al., 2005; Juan and Ruddle, 2003; Kieny et al., 1972; Nowicki
and Burke, 2000). Our results suggest that vertebral identity
remains plastic after somite segmentation. The vertebrae will fully
acquire their identity under the guide of regulators in the
differentiating somites such as Ndrg2.

The effect of Ndrg2 on vertebral specification seems to be
limited in thoracic/lumbar and lumbar/sacral transitional regions.
A potential redundancy effect from another member of the Ndrg

family should be considered. The other Ndrg family members
(Ndrg1 and Ndrg3) are also expressed in the somites and tail bud
during axial skeletal development (our unpublished data) (Okuda
and Kondoh, 1999). However, defects in the axial skeleton of
Ndrg1- and Ndrg4-deficient mice have not been reported (Okuda
et al., 2004; Taketomi et al., 2007; Yamamoto et al., 2011). It is
possible that double or triple knockout of the Ndrg genes would
produce a much broader effect on vertebral specification. In fact,
Col1a1-Ndrg2 transgenic mice have already extended their effect
on the second cervical vertebrae.

Ndrg2 modulates vertebral identity partially through the Hox genes

The vertebral homeotic transformations in Ndrg2-deficient
mice were correlated with alterations in Hoxc8-11 gene expres-
sion levels. Based on the phenotypes of Hox gene loss-of-function
mutants, the Hox8-11 paralogous group is thought to confer the
identity of the vertebrae from the mid-thoracic to the sacral
region (Alexander et al., 2009; Le Mouellic et al., 1992; Mallo
et al., 2010; McIntyre et al., 2007; van den Akker et al., 2001;
Wellik, 2007; Wellik and Capecchi, 2003). In Ndrg2�/� embryos,
both the Hoxc8 and Hoxc9 expression levels in the somites were
increased, whereas the Hoxc10 and Hoxc11 expression levels were
decreased compared to those of the controls. Loss of Hoxc8 or
Hoxc9 in somites leads to several homeotic transformations of L1
into T13 and the shift of transitional vertebra from T10 to T13 (Le
Mouellic et al., 1992; Suemori et al., 1995), which are effects
opposite to those of the Ndrg2 null mutation. Conversely, Hoxc10-
deficient mice display homeotic transformations similar to those
observed in the Ndrg2-deficient mice (Hostikka et al., 2009). In
addition, the changes in Hoxc8-10 genes expression levels were
also detected in Col1a1-Ndrg2 transgenic embryos. Of note,
alterations in the amount of Hoxc8-11 transcripts, but not their
expression boundaries, were detected in differentiating somites in
Ndrg2�/� mice. The impact of quantitative variations of Hox gene
expression on vertebral identity was not previously reported.
Therefore, we speculate that the combinatory alterations in Hox

genes expression levels could partially, even if not solely, account
for the vertebral defects in Ndrg2-deficient mice.

Ndrg2 inhibits Bmp signaling in the mesoderm of differentiating

somites

Bmp signaling plays an important role during mouse
somite development and osteochondrogenic differentiation
(Ikeya et al., 2006; Katagiri et al., 1998; McMahon et al., 1998;
McPherron et al., 1999; Miura et al., 2006; Oh and Li, 1997).
In Ndrg2-deficient embryos at E10.5, both the Bmp4 mRNA
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expression and p-Smad1/5/8 protein levels were elevated, indi-
cating an increase in Bmp/Smad signaling activity. Conversely,
forced expression of Ndrg2 in ATDC5 cells results in reduced Bmp4

mRNA expression and decreased Bmp/Smad signaling activity. It
is seems that Ndrg2 selectively inhibit Bmp4 expression, but not
the other Bmp ligands such as Bmp2, Bmp7 and Gdf11, in
differentiating somites (data not shown). In fact, in an analysis
of the Noggin mutation, a previous report showed that the
inhibition of Bmp signaling is essential for the chondrogenic
differentiation of the somitic mesoderm (McMahon et al., 1998).

Taken together, our results suggest that Ndrg2 regulate verteb-
ral specification in differentiating somites, partially through the
Hox genes and Bmp signaling. However, the molecular mechanisms
of this regulation remain to be addressed in the future.
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